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SOLUTION TO PROBLEM SET 5
Composed and formatted by E.A. Baltz and M. Strovink; proofed by D. Bacon

1. A mass M rests on a table, and a mass m
is supported on top of it by a massless spring
connecting it to M .

(a.) We want to find the force F needed to
push down on the spring so that the whole sys-
tem will barely leave the table. We solve this
by conservation of energy. The energy stored in
a spring is given by kx2/2 where x is the dis-
placement from equilibrium of the spring. We
can measure the gravitational potential of the
small mass relative to the equilibrium point of
the spring. Initially then, the spring is com-
pressed with a force F + mg which is just the
weight of the small mass plus the added force.
Hooke’s law tells us that x = −(F +mg)/k. We
can now write the initial energy of the system

Ei = −mg
k
(F +mg) +

(F +mg)2

2k

The first term is the gravitational energy relative
to the equilibrium point of the spring, and the
second term is the energy stored in the spring.
We want the spring to be able to lift the mass
M off the table. To do this it must apply a
force equal to Mg, its weight. When the spring
is released, it will oscillate. At the top of the
oscillation, there will be no kinetic energy. The
displacement y of the spring must barely provide
the force to lift the lower block: ky = Mg. The
energy here is the following

Ef =
Mmg2

k
+
M2g2

2k

Conservation of energy tells us that these are
the same, so now we can solve for F .

−mg
k
(F +mg) +

(F +mg)2

2k
=
Mmg2

k
+
M2g2

2k

Cancelling k and using the quadratic formula to
solve for F +mg,

F +mg =
(
mg ±

√
m2g2 + 2Mmg2 +M2g2

)

The expression under the square root is just
(M +m)g, so the expression simplifies a lot:

F = ±(M +m)g

We obviously want the plus sign.

(b.) This is a similar situation. The mass M is
dangling and barely touching the table. The dis-
placement of the spring just supports the weight
of the block so kx = Mg. At the other end,
the small mass is momentarily at rest at some
distance −y from equilibrium. The energies are

Ei =
Mmg2

k
+
M2g2

2k

Ef = −mgy + ky2

2

We equate these energies and solve for y.

−mgy + ky2

2
=
Mmg2

k
+
M2g2

2k

Using the quadratic formula again

ky = mg ±
√
m2g2 + 2Mmg2 +M2g2

Again the discriminant is a perfect square, and
we want the positive value of y, so

y =
(2m+M)g

k

The total distance that the mass falls is x+y = d.

d = 2
(M +m)g

k

This is just twice the displacement caused by the
force in part (a.), which makes sense, because
the displacement upwards should be the same as
the displacement downwards.
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(c.) (1) When M is zero, the necessary applied
force is mg. This is just the weight of the small
mass. The spring will bounce back with the
same force, so this is what is needed to lift the
whole assembly. The distance fallen makes sense
also, because the spring starts at its equilibrium
length. The mass wants to sit at mg/k below
this, to just support the weight. Thus it will
oscillate down to 2mg/k below this point.

(2) When m is zero, the force needed to
move the assembly is Mg; again this is the total
weight. The distance traveled by the end of the
spring in the second case is just 2Mg/k. The
end of the spring isMg/k away from equilibrium
when it begins, so the total distance traveled by
the end is 2Mg/k. While this seems to work out,
it does not necessarily agree with common sense:
a massless spring would not seem to be able to
pull a massive block off the table by virtue of
its own motion. However, we realize that, as the
spring mass approaches zero in this idealization,
its maximum velocity approaches infinity. This
explains why the spring is still able to pull the
block off the table, defying our intuition.

2.

(a.) The rocket is fired directly upward from the
ground. The initial energy is just U , the energy
in the fuel. After the fuel is spent, the fuel mass
m is moving down at speed u and the remaining
rocket mass M is moving upwards at speed v.
Because momentum is conserved over this very
short time, mu = Mv. The energy of the sys-
tem is given by conservation of energy, and at
launch, all of the energy is kinetic:

U =
1
2
Mv2 +

1
2
mu2 =

Mv2

2

(
1 +

M

m

)

Now we want to consider the motion of the mass
M alone. Its kinetic energy is Mv2/2, which we
can find from the previous equation.

KM =
U

1 +M/m

Energy for the mass M is now conserved, so we
can just set KM = Mgd, where d is the maxi-
mum height achieved by the rocket. This gives

the answer to part (a.):

d =
U

Mg

1
1 +M/m

(b.) This is a little more involved. The rocket
has gone around part of an oval track and is
now a distance h below where it started. The
gravitational energy (M +m)gh gets converted
to kinetic energy, so we get the velocity v0 of the
rocket before the fuel is used:

(M +m)gh =
1
2
(M +m)v2

0 ⇒ v0 =
√
2gh

Ignoring for the moment the gravitational en-
ergy, the energy of the rocket at this point is

Ei = U +
1
2
(M +m)v2

0 = U + (M +m)gh

The spring (fuel) imparts a change in veloc-
ity ∆v to M and ∆u to m. As in part (a.),
instantaneous conservation of momentum gives
M∆v = m∆u. After the spring is released, the
energy corresponding to Ei is

Ef =
1
2
M(v0 +∆v)2 +

1
2
m(v0 −∆u)2

We know by conservation of energy that Ei =
Ef , and we have M∆v = m∆u, so we can find
∆v:

∆v =

√
2U

M(1 +M/m)

The total velocity of M is now v = v0 +∆v:

v =
√
2gh+

√
2U

M(1 +M/m)

(c.) We can easily find the kinetic energy of
the remaining rocket, and, using energy conser-
vation, the maximum height H to which it rises
above its current position:

K =
1
2
M(v0 +∆v)2 =MgH

Using v0 =
√
2gh, we can solve for H:

H =
2gh+∆v

√
2gh+∆v2

2g
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Plugging in the result for ∆v, we arrive at the
final answer

H = h+
U

Mg(1 +M/m)
+

√
hU

Mg(1 +M/m)

This is an interesting result. The first term
just gets the rocket back to the height where it
started in the first place. The second term gets
it to the maximum height of the rocket in part
(a.). The fact that the third term is positive
means that the rocket actually flies higher in this
case. The gain in height is just the third term

∆H =

√
hU

Mg(1 +M/m)

(d.) This result does not conflict with energy
conservation, which says only that the total en-
ergy of the system is conserved. We have been
neglecting what happens to the mass m, which
will take away a smaller amount of energy in the
second case. If we looked at the total energy of
both pieces, it would be conserved.

3. K&K problem 4.7. This problem is one in
which both force and energy need to be consid-
ered. The forces on the ring are gravity, the
tension in the thread T , and the normal forces
due to the beads. The forces on the ring in the
vertical direction are

Fring = T −Mg − 2N(θ) cos θ

where θ is the angle of the bead’s position from
the top, and N(θ) is taken to be positive out-
ward. The two beads will move symmetrically.
We now need to find the normal force N(θ).
First we determine the velocity of the bead from
conservation of energy. It yields the following:

E/2 = mgL(cos θ − 1) +
1
2
mv2(θ) = 0

This gives the velocity, and thus the centripetal
acceleration ac, as a function of θ:

v2(θ) = 2gL(1− cos θ) ⇒ ac = 2g(1− cos θ)

The centripetal acceleration is provided by grav-
ity and the normal force. Since a positive normal

force is outward, at the top the normal force will
be negative. The radial equation of motion will
be

mac = N +mg cos θ ⇒ N(θ) = mg(2− 3 cos θ)

Now we can go back to the force equation for the
ring and use this result. The total force on the
ring will be zero, but the ring will just start to
move upwards when the thread is slack, which is
when T = 0. Using both of these facts, we get
an equation for θ

Mg = 2mg cos θ(3 cos θ − 2)

This is just a quadratic equation in cos θ. Multi-
plying it out, we can apply the quadratic formula
to get the answer

cos θ =
1
3
± 1

3

√
1− 3M

2m

There is a small problem here in that the dis-
criminant can be negative, making the cosine of
the angle complex. This of course is unphysical.
The problem is that for sufficiently small m, the
motion of the small masses is never important
enough to cause the tension in the rope to vanish,
so our calculation is wrong from the start. In-
sisting that cos θ be real, we obtain the condition

m >
3
2
M

Taking the positive root, the final answer is

θ = cos−1

(
1
3
+

1
3

√
1− 3M

2m

)

4. We assume that the moon is a uniform sphere
of mass M = 7.3× 1022 kg and radius R = 1740
km. A straight, frictionless tunnel connects two
points on the surface. Given the mass and
radius, the density is just ρ = 3M/4πR3. We
need to know the acceleration due to gravity at
a distance r from the center of the moon. This is
also straightforward. Recall that a spherical shell
of mass exerts no force on objects inside it, so at
a radius r, the only force we need to consider is
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due to the mass in the moon interior to radius r.
This is just the density times the volume interior
to r, or M(r) = Mr3/R3. The acceleration
due to gravity is then just g(r) = −GM(r)/r2 =
−GMr/R3. Thus the acceleration due to gravity
increases linearly as one moves away from the
center of a uniform solid sphere.

(a.) In a spherical polar coordinate system with
its ẑ axis at the moon’s north pole, assume
that the tunnel lies in a straight line between
(r, θ0, φ) = (R, θ0, 0) and (R, θ0, π), i.e. between
two points at the same north latitude π/2 − θ0
having the largest possible difference in longi-
tude. This means that the distance along a great
circle between the ends of the tunnel is 2θ0, while
the distance from the center of the moon to the
center of the tunnel is z0 = R cos θ0. Now assume
that the mass makes an angle ψ (−π

2 < ψ < π
2 )

with a line connecting the center of the moon
and the center of the tunnel, i.e. with the ẑ axis.
The distance of the mass from the center of the
tunnel is then x = z0 tanψ, while its distance
from the center of the moon is r = z0/ cosψ. We
now need to know the component Fx of the grav-
itational force −GMmr/R3 which lies in the (x̂)
direction of the tunnel, which makes an angle
π/2− ψ with the radial direction. This is

Fx = −GMmr

R3
cos (π/2− ψ)

= −GMm

R3

z0
cosψ

sinψ

= −GMm

R3
x

This is like the force from a Hooke’s law spring
with effective spring constant keff = GMm/R3,
yielding simple harmonic oscillation with reso-
nant angular frequency

ω0 =

√
keff

m
=

√
GM

R3

(b.) Plugging in values of M and R for the
moon, and using T = 2π/ω0, we get for the
period of oscillation

T = 6536 seconds = 109 minutes

(c.) A satellite traveling in a circular orbit
must have centripetal acceleration provided by
gravity, which means that

v2

R
=
GM

R2
= ω2R

From the last equality we see that the angu-
lar frequency ω of a circular orbit of radius R
around the moon is the same as ω0 above. Of
course the period is the same as well.

5. K&K problem 4.23. Two balls of masses M
and m are dropped from height h and collide
elastically. The small ball is on top of the larger
ball. Conservation of energy for the system gives
its speed v right before the balls hit the ground:

(M +m)gh =
1
2
(M +m)v2 ⇒ v =

√
2gh

The ball M collides with the ground first. In
order to conserve energy, it must still have
speed v instantaneously after it bounces from
the ground. Now it immediately collides with
the small ball. (Think of this problem as if there
were a very small gap between the two balls so
that the first ball to hit the ground has a chance
to bounce before the second one hits it.) We con-
sider the elastic collision between the two balls,
each moving at speed v towards the other.

The easiest frame in which to study this
collision is a comoving (inertial) frame that is
instantaneously at rest with respect to the large
ball M immediately after it has rebounded with
velocity v =

√
2gh from its elastic collision with

the ground. In this frame, M is instantaneously
at rest, and m has (upward) velocity −2v. When
the collision occurs, if m � M as stated in the
problem, M seems to m like a “brick wall” from
which it bounces back elastically with the same
speed. Thus, in the comoving frame immediately
after the collision, m has velocity +2v. Finally,
transforming back to the lab frame, m acquires
an extra velocity increment v, for a total of 3v.
Since the height that m reaches is proportional
to the square of its velocity, this means that
m reaches nine times the height from which it
originally was dropped.
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A less elegant approach considers the colli-
sion between M and m in the lab frame. Here
is it essential not to apply the approximation
m � M until near the end, since cancellations
occur which may make nonleading terms more
important than would initially be suspected.

In the lab frame, conservation of momentum
gives

Mv −mv =MVM +mVm

We also have conservation of energy through this
collision. This condition gives

1
2
(M +m)v2 =

1
2
MV 2

M +
1
2
mV 2

m

These are two equations in the two unknowns
Vm and VM , since we already know v =

√
2gh.

We are interested in Vm, which yields the de-
sired final height V 2

m/2g of m, but we are not
interested in VM . So we plan to eliminate VM by
solving for it using the first equation and then
substituting for it in the second.

Before proceeding with this algebra, it is
convenient to substitute

ε = m/M

u = Vm/v

U = VM/v

so that all terms are dimensionless. The two
equations above become

1− ε = U + εu

1 + ε = U2 + εu2

Solving the first equation for U ,

U = 1− ε− εu

Substituting this value for U in the second equa-
tion,

1 + ε = 1− 2ε+ ε2 − 2εu+ 2ε2u+ ε2u2 + εu2

0 = ε(1 + ε)u2 − 2ε(1− ε)u− ε(3− ε)

0 = u2 − 2
1− ε

1 + ε
u− 3− ε

1 + ε

Neglecting ε with respect to 3 or 1 in both
quotients, the polynomial is

u2 − 2u− 3 = (u− 3)(u+ 1)

with the physical solution

u = 3

Vm = 3v =
√
18gh

h′ =
V 2

m

2g
= 9h

as before.

6. This is a collision problem that has different
unknown quantities than those to which you are
accustomed, but it is still solvable. We have two
collisions to study, and the unknowns are the
neutron mass and the initial and final speeds of
the neutrons. The initial speeds are the same, so
there are four unknowns in total. We have two
collisions, each of which yields two equations
(one for momentum conservation, one for en-
ergy conservation since the collisions are elastic).
Therefore the system can be solved uniquely.
The directions of the scattered neutrons rela-
tive to the incident directions do not represent
additional unknowns, since the maximum recoil
velocities of the target nucleii will occur when
the collisions take place head-on, with the incom-
ing neutrons bouncing straight back. Thus we
can take this to be a one dimensional problem.

The equations are the following (the energy
equations have been multiplied by 2):

mnv = mnv
′ +mHvH mnv

2 = mnv
′2 +mHv

2
H

mnv = mnv
′′ +mNvN mnv

2 = mnv
′′2 +mNv

2
N

Solving these equations for mn and v requires
careful algebra. We square the first momentum
equation to get a relation between v′, mn, and v

v′2 =
(mnv −mHvH)2

m2
n

Now we plug this into the first energy equation

mnv
2 =

(mnv −mHvH)2

mn
+mHv

2
H
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Expanding,

m2
Hv

2
H − 2mnmHvvH +mnmHv

2
H = 0

Writing this as an equation for v, we get

v =
1
2

(
1 +

mH

mn

)
vH

This is fairly simple result. If we perform the
same manipulations on the nitrogen equations,
we will get an analogous result

v =
1
2

(
1 +

mN

mn

)
vN

We can now use these to solve for mn and v.
Equating the right hand sides, we get a single
equation for the mass.

mnvH +mHvH = mnvN +mNvN

mn =
mNvN −mHvH

vH − vN
.

We can now use this to find the initial velocity
of the neutrons:

v =
vH

2

(
1 +

mH(vH − vN )
mNvN −mHvH

)
=
vH

2

(mNvN −mHvN

mNvN −mHvH

)
=
vHvN

2

( mN −mH

mNvN −mHvH

)
.

We want to know the mass of the neutron in
amu, so we plug in mH = 1 and mN = 14
(greater accuracy is unnecessary, since the recoil
velocities are measured only to 10%). We also
look at both boundaries of the nitrogen veloc-
ity, calling these results m± and v±. Plugging
in numbers, the values of mn are

mn = 1.159 amu
m+ = 1.415 amu
m− = 0.911 amu .

Chadwick’s experimental work is seen to be re-
liable; today’s accepted value for the neutron
mass is 1.008665 amu, or 938.27231 ± 0.00028

MeV/c2, well within his experimental range.
The range of initial neutron velocity is given by

v = 3.07× 107 m/sec

v+ = 2.82× 107 m/sec

v− = 4.13× 107 m/sec .

7. K&K problem 4.13. The Lennard-Jones
potential is given by

U = ε

[(r0
r

)12

− 2
(r0
r

)6
]

(a.) We find the minimum of this potential by
differentiating it with respect to r and setting
the results equal to zero:

dU

dr
= −12ε

r

[(r0
r

)12

−
(r0
r

)6
]
= 0

This is easy to solve:(r0
r

)12

=
(r0
r

)6

⇒ r = r0

The depth of the potential well is just U(r0) =
−ε. Thus the potential well has a depth ε.
(b.) We find the frequency of small oscillations
by making a Taylor expansion of the potential
about r = r0. Read section 4.10 in K&K for
more information on this. We can write the
potential as follows:

U(r) = U(r0) +
(
dU

dr

)
r=r0

(r − r0)

+
1
2

(
d2U

dr2

)
r=r0

(r − r0)2 + · · ·

We know that dU/dr = 0 at r = r0, so we drop
the middle term.

U(r) ≈ −ε+ 1
2

(
d2U

dr2

)
r=r0

(r − r0)2

This is exactly the form of the potential of a mass
on a spring. We only have to identify the spring
constant. Remembering that Uspring = kx2/2,
we make the identification

k =
(
d2U

dr2

)
r=r0
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For the Lennard-Jones potential, we already
know the first derivative, so we need to differen-
tiate once more.

d2U

dr2
=

12ε
r2

[
13

(r0
r

)12

−
(
7
r0
r

)6
]

Plugging in r = r0, we find the effective spring
constant for this potential

k =
72ε
r20

We now consider two identical masses m on the
ends of this “spring”. Their (coupled) equations
of motion are:

mr̈1 = k(r − r0) mr̈2 = −k(r − r0)

where r = r2 − r1 is the distance between the
masses. Subtracting these two equations, we get

mr̈ = −2k(r − r0)

The frequency of oscillation is then ω2 = 2k/m.
(Note that we could have obtained the same
result by considering the two-mass system to
be a single mass of reduced mass mreduced =
m1m2/(m1 +m2)). Plugging in the above value
for the effective spring constant k,

ω = 12
√

ε

r20m


